Embedding Diffusion in Variational Bayes: a Technique for Segmenting Images
نویسندگان
چکیده
In this paper, we discuss how image segmentation can be handled by using Bayesian learning and inference. In particular variational techniques relying on free energy minimization will be introduced. It will be shown how to embed a spatial diffusion process on segmentation labels within the Variational Bayes learning procedure so as to enforce spatial constraints among labels.
منابع مشابه
Singular Value Decomposition based Steganography Technique for JPEG2000 Compressed Images
In this paper, a steganography technique for JPEG2000 compressed images using singular value decomposition in wavelet transform domain is proposed. In this technique, DWT is applied on the cover image to get wavelet coefficients and SVD is applied on these wavelet coefficients to get the singular values. Then secret data is embedded into these singular values using scaling factor. Different com...
متن کاملVariational Bayes with Gauss-Markov-Potts Prior Models for Joint Image Restoration and Segmentation
In this paper, we propose a family of non-homogeneous Gauss-Markov fields with Potts region labels model for images to be used in a Bayesian estimation framework, in order to jointly restore and segment images degraded by a known point spread function and additive noise. The joint posterior law of all the unknowns ( the unknown image, its segmentation hidden variable and all the hyperparameters...
متن کاملA New Optimal Solution Concept for Fuzzy Optimal Control Problems
In this paper, we propose the new concept of optimal solution for fuzzy variational problems based on the possibility and necessity measures. Inspired by the well–known embedding theorem, we can transform the fuzzy variational problem into a bi–objective variational problem. Then the optimal solutions of fuzzy variational problem can be obtained by solving its corresponding biobjective variatio...
متن کاملSegmenting Fiber Bundles in Diffusion Tensor Images
We consider the problem of segmenting fiber bundles in diffusion tensor images. We cast this problem as a manifold clustering problem in which different fiber bundles correspond to different submanifolds of the space of diffusion tensors. We first learn a local representation of the diffusion tensor data using a generalization of the locally linear embedding (LLE) algorithm from Euclidean to di...
متن کاملDeep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
We introduce Deep Variational Bayes Filters (DVBF), a new method for unsupervised learning and identification of latent Markovian state space models. Leveraging recent advances in Stochastic Gradient Variational Bayes, DVBF can overcome intractable inference distributions via variational inference. Thus, it can handle highly nonlinear input data with temporal and spatial dependencies such as im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJPRAI
دوره 22 شماره
صفحات -
تاریخ انتشار 2008